TECHNICAL DOCUMENTATION

PRINCIPLES OF PNEUMATICS

PRESSURE:
The ratio between a force and the surface on which it acts.

$$
P=\frac{F(N)}{S\left(m^{2}\right)}=P a
$$

ATMOSPHERIC PRESSURE: Equivalent to the pressure exerted on a surface at sea level at $20^{\circ} \mathrm{C}$ and with 65% humidity: $10.33 \mathrm{~m} \mathrm{H}_{2} \mathrm{O} ; 760 \mathrm{~mm} \mathrm{Hg} ; 1.013 \times 10^{5} \mathrm{~Pa}$.

ABSOLUTE PRESSURE:	The pressure above the absolute zero value - pressure $0=$ absolute vacuum.
GAUGE PRESSURE:	The pressure referring to ambient atmospheric pressure: it is normally indicated by the pressure gauges used in pneumatic circuits.
	Pressure read on gauge (6 bar)
	Absolute vacuum
	Gauge pressure = (absolute P) - (atmospheric P.)
UPSTREAM PRESSURE:	Pressure of the compressed air at the pneumatic component inlet.
DOWNSTREAM PRESSURE:	Pressure of the compressed air at the pneumatic component outlet.
\triangle P PRESSURE DROP:	Difference between upstream and downstream pressure.
FLOW RATE:	The volume of air passing through a given section in a unit of time. In pneumatics, the volume unit of measurement is Nl (Normal litre). In practice it represents the volumetric capacity of the air referring to ambient atmospheric pressure E.g. in a conduit of a given section, there is a mass flow of 1 litre of air ($1 \mathrm{dm}^{3}$) at 7 bar absolute pressure. This value expressed as volume of air corresponds to 7 litres of air $\left(7 \mathrm{dm}^{3}\right)$ at the ambient atmospheric pressure (1 bar).

Volumetric flow rate (referring to absolute pressure)

- With the same pressure, the flow rate is directly proportional to the port cross section.
- With the same cross section, the pressure is directly proportional to the flow rate.
- Without a ΔP (difference between upstream and downstream pressure), there can be no flow rate.

PASCAL'S LAW:
A confined fluid transmits externally applied pressure uniformly in all directions.

Density of air, measured to $20^{\circ} \mathrm{C}$ to the atmospheric pressure: $1.275 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$

CALCULATING THE FLOW RATE OF A VALVE USING FLOW COEFFICIENT k_{v}

Coefficient k_{v} gives approximate values when used for compressed air.
The flow rate Q_{N} at a normal volume through a valve is:
Subsonic flow: $P_{2}>\frac{P_{1}}{2}$
Supersonic flow: $P_{2}<\frac{P_{1}}{2}$
$Q_{N}=28,6 \cdot k_{v} \cdot \sqrt{P_{2} \cdot \Delta P} \sqrt{\frac{293}{273+t}}$

$$
Q_{N}^{*}=14,3 \cdot k_{v} \cdot P_{1} \cdot \sqrt{\frac{293}{273+t}}
$$

where
$Q_{N}=$ flow rate at a normal volume $[\mathrm{N} / / \mathrm{min}]$
$Q_{N}{ }^{*}=$ critical flow rate at a normal volume $[\mathrm{Nl} / \mathrm{min}]$
$\mathrm{k}_{\mathrm{v}}=$ hydraulic coefficient in $\frac{\mathrm{l}}{\min }\left(\frac{\mathrm{kg}}{\mathrm{dm}^{3} \cdot \mathrm{bar}}\right)^{1 / 2}$
$P_{1}=$ absolute upstream pressure [bar]
$P_{2}=$ absolute downstream pressure [bar]
$\Delta P=$ difference in pressure $P_{1}-P_{2}[$ bar]
\dagger = input air temperature [${ }^{\circ} \mathrm{C}$]

CALCULATING THE FLOW RATE OF A VALVE USING FLOW COEFFICIENTS C AND B

The flow rate Q_{N} at a normal volume through a valve is:

Subsonic flow: P2 >b $\cdot \mathrm{P}_{1}$
$Q_{N}=C \cdot P_{1} \cdot \sqrt{1-\left(\frac{r-b}{1-b}\right)^{2}} \cdot \sqrt{\frac{293}{273+t}}$

Supersonic flow: $\mathrm{P} 2<\mathrm{b} \cdot \mathrm{P}_{1}$

$$
Q_{N}^{*}=C \cdot P_{1} \cdot \sqrt{\frac{293}{273+t}}
$$

where
$Q_{N}=$ flow rate at a normal volume $[\mathrm{Nl} / \mathrm{min}]$
$Q_{N}{ }^{*}=$ critical flow rate at a normal volume $[\mathrm{Nl} / \mathrm{min}]$
$\mathrm{C}^{\mathrm{N}}=$ conductance in $[\mathrm{N} / / \mathrm{min} \cdot$ bar]
$P_{1}=$ absolute upstream pressure [bar]
$P_{2}=$ absolute downstream pressure [bar]
$r^{2}=$ upstream pressure : downstream pressure ratio P_{2} / P_{1}
b = critical pressure ratio $b=P_{2}^{*} / P_{1}$
$\dagger \quad=$ input air temperature $\left[{ }^{\circ} \mathrm{C}\right]$

CALCULATING THE FLOW RATE OF A VALVE USING FLOW COEFFICIENTS C_{v}

The flow rate Q_{N} at a normal volume through a valve is:

Subsonic flow: $P_{2}>0.528 \cdot P_{1}$

$$
Q_{N}=400 \cdot C_{V} \cdot \sqrt{P_{2} \Delta P} \cdot \sqrt{\frac{273}{273+t}}
$$

Supersonic flow: $\mathrm{P}_{2}<0.528 \cdot \mathrm{P}_{1}$

$$
Q_{N}^{*}=200 \cdot C_{V} \cdot P_{1} \cdot \sqrt{\frac{273}{273+t}}
$$

where

$Q_{N}=$ flow rate at a normal volume $[\mathrm{Nl} / \mathrm{min}]$
$Q_{N}{ }^{*}=$ critical flow rate at a normal volume $[\mathrm{Nl} / \mathrm{min}]$
$C_{V}=$ coefficient of flow [US . GPM / p.s.i.]
$\mathrm{P}_{1}=$ absolute upstream pressure [bar]
$P_{2}=$ absolute downstream pressure [bar]
$t^{2}=$ input air temperature $\left[{ }^{\circ} \mathrm{C}\right]$

CALCULATING THE NOMINAL FLOW RATE

The nominal flow rate $Q_{N m}$ of a valve, i.e. the flow at normal volume passing through a valve with ($P_{1}=6[\mathrm{bar}]\left(P_{1}=7[\mathrm{bar}]\right.$ absolute) and $\Delta \mathrm{P}=1$ [bar], can be obtained from the previous formula as follows:
$Q_{\mathrm{Nn}}=66 \cdot k_{v}$
$Q_{\mathrm{N} \mathrm{n}}=943.8 \cdot \mathrm{C}_{\mathrm{V}}$
$Q_{N n}=7 \cdot C \cdot \sqrt{1-\left(\frac{0,857-b}{1-b}\right)^{2}}$
Equalising the first two formulae gives: $k_{v}=14.3 \cdot C_{v}$

- REACTIONS BETWEEN $Q_{N n}-C_{v}-k_{v}-K_{v}-S-d^{2}$

$Q_{N n}=$ flow rate in $[\mathrm{N} / / \mathrm{min}]$ with $\mathrm{p}_{1}=6[$ bar $]\left(\mathrm{P}_{1}=7[\right.$ bar $]$ absolute) and $\Delta \mathrm{P}=1$ [bar]
$\mathrm{k}_{\mathrm{v}} \quad$ hydraulic coefficient in $\frac{\mathrm{l}}{\min }\left(\frac{\mathrm{kg}}{\mathrm{dm}^{3} \cdot \mathrm{bar}}\right)^{1 / 2}$
$\mathrm{K}_{\mathrm{v}} \quad$ hydraulic coefficient in $\frac{\mathrm{m}^{3}}{\mathrm{~h}}\left(\frac{\mathrm{~kg}}{\mathrm{dm}^{3} \cdot \mathrm{bar}}\right)^{1 / 2}$
$C_{v} \quad$ coefficient of flow [US • GPM / p.s.i.]
$\mathrm{S}_{\mathrm{e}} \quad$ equivalent cross section [mm^{2}]
$d_{e}^{2}=S \cdot \frac{4}{\pi}$ through diameter ${ }^{2}$ in $\left[\mathrm{mm}^{2}\right]$ obtained from the equivalent cross section

CONVERSION TABLES

TABLE 1 －CONVERSION BETWEEN SYSTEMS OF MEASUREMENT

	Technical system and CGS system	$\overrightarrow{\text { Multiply by }}$	International system	Multiply by	British system
Length	m	1	m	0.0254	in（inch）
			m	0.3048	ff（foot）
Time	s	1	s	1	s
Area	m^{2}	1	m^{2}	0.000645	in ${ }^{2}$
			m^{2}	0.0929	Hf^{2}
Volume	m^{3}	1	m^{3}	16．39．10－4	in ${ }^{2}$
			m^{3}	0.02832	Hf^{2}
Speed	$\mathrm{m} \cdot \mathrm{s}^{-1}$	1	$\mathrm{m} \cdot \mathrm{s}^{-1}$	0.3048	f． s^{-1}
Acceleration	$\mathrm{m} \cdot \mathrm{s}^{-2}$	1	$\mathrm{m} \cdot \mathrm{s}^{-2}$	0.3048	f． s^{-2}
Mass	$\mathrm{kg} \cdot \mathrm{s}^{2} \cdot \mathrm{~m}^{-1}$	9.81	kg	0.4536	lb （pound）
			kg	14.594	slug $=\mathrm{lb} f \cdot \mathrm{~s}^{2} \cdot \mathrm{ft}^{-1}$
Force	kg o kp	9.81	N	4.4483	lb f（pound）
	kg	0.981	da $\mathrm{N}=10 \mathrm{~N}$		
Torque	$\mathrm{kg} \cdot \mathrm{m}$	9.81	N．m	1.356	lb f ft
Density	$\mathrm{kg} \cdot \mathrm{s}^{2} \cdot \mathrm{~m}^{-1}$	9.81	$\mathrm{kg} \cdot \mathrm{m}^{-3}$	16.02	lb．ft ${ }^{-3}$
Specific weight	$\mathrm{kg} \cdot \mathrm{m}^{-1}$	9.81	$\mathrm{N} \cdot \mathrm{m}^{-3}$	157.16	$\mathrm{lb} f \cdot \mathrm{ft}^{-3}$
Work，energy	$\mathrm{kg} \cdot \mathrm{m}$	9.81	J	1.356	$\mathrm{lb} f$ ft
			$\mathrm{KWh}=3.6 \cdot 10^{6} \mathrm{~J}$		
Heat	Cal	4186	J	1055.1	BTU
Power	$\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-1}$	9.81	W	1.3558	lb f ff． s^{-1}
	CV	735	W	745.7	HP
Pressure	$\mathrm{kg} \cdot \mathrm{m}^{-2}$	9.81	Pa	6.8948 .10	p．s．i．$=1 \mathrm{~b} f \cdot \mathrm{in}^{-2}$
	$\mathrm{kg} \cdot \mathrm{cm}^{-2}$	$9.81 \cdot 10$	Pa		
	$\mathrm{kg} \cdot \mathrm{cm}^{-2}$	0.981	bar $=10^{5} \mathrm{~Pa}$		
Mass flow	$\mathrm{kg} \cdot \mathrm{s} \cdot \mathrm{m}^{-1}$	9.81	$\mathrm{kg} \cdot \mathrm{s}^{-1}$	0.4536	$\mathrm{lb} \cdot \mathrm{s}^{-2}$
Volume flow	$\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}$	1	$\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}$	0.02832	f． s^{-1}
	$\mathrm{N} / / \mathrm{min}^{-1}$	0.0000167	$\mathrm{Nm}^{3} \cdot \mathrm{~S}^{-1}$	0.000472	scfm
Dynamic viscosity	$\mathrm{kg} \cdot \mathrm{s} \cdot \mathrm{m}^{-2}$	9.81	Pa．s	6.896	lb $f \cdot \mathrm{~s} \cdot \mathrm{in}^{-2}$
	Po（poise－system CGS）	0.1	Pa．s		
Kinematic viscosity	$\mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$	1	$\mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$	0.0929	$\mathrm{ft}^{2} \cdot \mathrm{~s}^{-1}$
	St（stokes－system CGS）	10^{-4}	$\mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$		
	Technical system and CGS system	Divide by	International system	$\overrightarrow{\text { Divide by }}$	British system

TABLE 2 －TEMPERATURE CONVERSION

${ }^{\circ} \mathrm{F}=\left[1.8 \cdot{ }^{\circ} \mathrm{C}\right]+32$
${ }^{\circ} \mathrm{C}=\left[{ }^{\circ} \mathrm{F}-32\right] \cdot 0.5$
$\mathrm{~K}={ }^{\circ} \mathrm{C}+273$
${ }^{\circ} \mathrm{C}=$ degrees Celsius
$K=$ degrees Kelvin
${ }^{\circ} \mathrm{F}=$ degrees Fahrenheit

TABLE 3 －MULTIPLES AND SUB－MULTIPLES

Name	Symbol	Value
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
etto	h	10^{2}
deca	da	10
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}

TABLE 4 －PRESSURE UNIT CONVERSION FACTORS

To obtain the pressure for the following units，multiply the number given for the source units by the coefficient shown．

Source units	Pa	kPa	MPa	bar	mbar	kp／cm ${ }^{2}$	cm H2O	mm H2O	mm Hg	p．s．i．
Pa	1	10^{-3}	10^{-5}	10^{-5}	10^{-2}	10．1972．10－6	10．1972．10 ${ }^{-3}$	101．972．10 ${ }^{-3}$	$7.50062 \cdot 10^{-3}$	$0.145038 \cdot 10^{-3}$
kPa	10^{3}	1	10^{-3}	10^{-2}	10	10．1972．10－3	10.1972	101.972	7.50062	0.145038
MPa	10^{6}	10^{3}	1	10	10^{4}	10.1972	10．1972．10 ${ }^{3}$	101．972．103	$7.50062 \cdot 10^{3}$	$0.145038 \cdot 10^{3}$
bar	10^{5}	10^{2}	10^{-1}	1	10^{3}	1.01972	1．01972．10 ${ }^{3}$	10．1972．103	750.062	14.5038
mbar	100	0.1	10^{-4}	10^{-3}	1	$1.01972 \cdot 10^{-3}$	1.01972	10.1972	0.750062	$14.5038 \cdot 10^{-3}$
$\mathrm{kp} / \mathrm{cm}^{2}$	98066.5	98.0665	$98.0665 \cdot 10^{-3}$	0.989665	980.665	1	1000	10.000	735.559	14.2233
$\mathrm{cm} \mathrm{H}_{2} \mathrm{O}$	98.0665	$98.0665 \cdot 10^{-3}$	$98.0665 \cdot 10^{-6}$	$0.98665 \cdot 10^{-3}$	0.98665	10^{-3}	1	10	0.735559	$14.2233 \cdot 10^{-3}$
$\mathrm{mm} \mathrm{H} \mathrm{H}_{2}$	9.80665	$9.80665 \cdot 10^{-3}$	$9.80665 \cdot 10^{-6}$	98．0665．10－6	98．0665．10－3	10^{-4}	0.1	1	73．5559．10－3	$14.2233 \cdot 10^{-3}$
mm Hg	133.322	133．322．10－3	$133.322 \cdot 10^{-3}$	$1.33322 \cdot 10^{-3}$	1.33322	$1.35951 \cdot 10^{-3}$	1.35951	13.5951	1	$19.3368 \cdot 10^{-3}$
p．s．i．	6894.76	6.89476	$6.89476 \cdot 10^{-3}$	$68.9476 \cdot 10^{-3}$	68.9476	70．307．10－3	70.307	703.07	51.7149	1

TABLE 5 - AIR CONSTANTS

Entity	Symbol		Value
Dynamic viscosity	μ		Pa s
Kinematic viscosity	γ	$17.89 \cdot 10^{-6}$	$\mathrm{~m}^{2 s^{-1}}$
Density	ρ	$14.61 \cdot 10^{-6}$	1.225
Specific heat at constant pressure	Cp	1.004	$\mathrm{~kg} \mathrm{~m}^{-3}$
Speed of sound	a	340.29	$\mathrm{KJ} \mathrm{kg}^{-1} \mathrm{~K}^{-1}$
Gas constant	R	287.1	m s
			Jkg K

TABLE 6 - CONTENT OF WATER VAPOUR IN SATURATED COMPRESSED AIR

Grams of water vapour per cubic metre $\left(\mathrm{g} / \mathrm{m}^{3}\right.$) of air at ambient atmospheric pressure 1.013 bar (0 bar gauge pressure), saturated and compressed at the given pressures and temperatures.

Pressure - bar													
Temperature ${ }^{\circ} \mathrm{C}$	0	0.4	0.63	1	1.6	2.5	4	6.3	8	10	12.5	16	20
0	4.82	3.45	2.97	2.42	1.87	1.39	0.97	0.67	0.54	0.44	0.36	0.29	0.23
5	6.88	4.93	4.24	3.46	2.68	1.99	1.39	0.95	0.77	0.63	0.52	0.41	0.33
10	9.41	6.74	5.80	4.73	3.66	2.72	1.90	1.30	1.06	0.87	0.70	0.56	0.45
15	12.7	9.08	7.83	6.39	4.94	3.67	2.56	1.76	1.43	1.17	0.95	0.76	0.61
20	17.4	12.5	10.7	8.75	6.77	5.02	3.51	2.41	1.95	1.60	1.30	1.04	0.84
25	23.6	16.9	14.6	11.9	9.18	6.82	4.77	3.27	2.65	2.17	1.77	1.40	1.14
30	30.5	21.8	18.8	15.3	11.9	8.81	6.16	4.22	3.43	2.81	2.29	1.81	1.47
35	39	27.9	24	19.6	15.2	11.3	7.87	5.40	4.38	3.59	2.92	2.32	1.88
40	49.6	35.5	30.6	24.9	19.3	14.3	10	6.87	5.57	4.55	3.72	2.95	2.39
45	63.5	45.45	39.2	31.9	24.7	18.3	12.8	8.79	7.13	5.84	4.76	3.77	3.06
50	81	58	49.9	40.7	31.5	23.4	16.4	11.2	9.10	7.45	6.07	4.82	3.90

TABLE 7 - VOLUME FLOW UNIT CONVERSION FACTORS

To obtain volume flow for the following units, multiply the number given for the source units by the coefficient shown.

Source units	$\mathrm{m}_{3} / \mathrm{s}$	1/s	$\mathrm{cm}^{3} / \mathrm{s}$	$\mathrm{m}^{3} / \mathrm{h}$	$\mathrm{m}^{3} / \mathrm{min}$	I/h	1/min	$\mathrm{fr}^{3} / \mathrm{min}(\mathrm{scfm})$	gallone/min UK	gallone/min USA
$\mathrm{m}^{3} / \mathrm{s}$	1	10^{3}	10^{6}	3600	60	$3.6 \cdot 10^{3}$	60.10^{3}	$2.1188 .10^{3}$	13.198.10 ${ }^{3}$	15.850.10 ${ }^{3}$
1/s	10^{-3}	1	10^{3}	3.6	60.10-3	$3.6 \cdot 10^{3}$	60	2.1188	13.198	15.850
$\mathrm{cm}^{3} / \mathrm{s}$	10^{-6}	10^{-3}	1	$3600 \cdot 10^{-6}$	60.10-6	3.6	60.10-3	$2.1188 \cdot 10^{-3}$	$13.198 \cdot 10^{-3}$	$15.850 \cdot 10^{-3}$
$\mathrm{m}^{3} / \mathrm{h}$	$0.277778 \cdot 10^{-3}$	0.27778	$0.277778 \cdot 10^{3}$	1	$16.667 \cdot 10^{-3}$	10^{3}	16.667	0.58856	3.6661	4.4028
$\mathrm{m}^{3} /$ min	16.667.10-3	16.667	$16.667 \cdot 10^{3}$	60	1	6.104	10^{3}	35.313	219.97	264.17^{-3}
1/h	$0.27778 \cdot 10^{-6}$	$0.27778 \cdot 10^{-3}$	0.27778	10^{-3}	$16.667 \cdot 10^{-6}$	1	$16.667 \cdot 10^{-3}$	$0.58856 \cdot 10^{-3}$	$3.6661 \cdot 10^{-3}$	4.4028.10-3
1/min	16.667.10-6	$16.667 \cdot 10^{-3}$	16.667-6	60.10-3	10^{-3}	60-3	1	$35.313 \cdot 10^{-3}$	$219.97 \cdot 10^{-3}$	$264.17 \cdot 10^{-3}$
$\mathrm{Hf}^{3} / \mathrm{min}$	$0.47195 \cdot 10^{-3}$	0.47195	$0.47195 \cdot 10^{3}$	1.6990	$28.317 \cdot 10^{-3}$	1.6990.10 ${ }^{3}$	28.317	1	6.2288	7.4804
UK gallon/min	$75.768 \cdot 10^{-6}$	75.768 ${ }^{-3}$	75.768	0.27276	$4.5461 \cdot 10^{-3}$	272.76	4.5461	0.16054	1	1.2009
US gallon/min	$63.090 \cdot 10^{-6}$	$63.090 \cdot 10^{-3}$	63.090	0.22712	$3.7854 \cdot 10^{-3}$	227.12	3.7854	0.13368	0.83266	1

TABLE 8 - RECOMMENDED FLOW RATE

Maximum recommended flow rate in $\mathrm{Nl} /$ min for pneumatic circuit piping. Flow rate values are calculated as follows:

- pipes $\varnothing 2$ to $\varnothing 12$ with a pressure drop equal to 0.3% of operating pressure per metre of pipe.
- pipes $\varnothing 15$ to $\varnothing 40$ with a pressure drop equal to 0.15% of the operating pressure per metre of pipe.

Inside diameter in mm - Nominal diameter in gas inches											
Pressure bar	$\varnothing 2$	$\varnothing 4$	$\begin{aligned} & 1 / 8^{\prime \prime} \\ & \varnothing 6 \end{aligned}$	$\begin{aligned} & 1 / 4^{\prime \prime} \\ & \emptyset 8 \end{aligned}$	$\begin{aligned} & 3 / 8^{\prime \prime} \\ & \varnothing 10 \end{aligned}$	$\varnothing 12$	$\begin{aligned} & 1 / 2^{\prime \prime} \\ & \varnothing 15 \end{aligned}$	$\begin{aligned} & 3 / 4^{\prime \prime} \\ & \emptyset 20 \end{aligned}$	$\begin{aligned} & 1 " \\ & \varnothing 25 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 11 / 4^{\prime \prime} \\ \varnothing 032 \end{array}$	$\begin{aligned} & 11 / 2^{\prime \prime} \\ & \varnothing 40 \end{aligned}$
2	3.5	19	53	110	190	300	370	750	1350	2500	4300
4	6.2	35	97	200	350	550	700	1400	2400	4500	7800
6	9	50	140	290	500	800	1000	2000	3500	6500	11500
8	11.8	66	185	380	660	1050	1300	2600	4500	8500	15000
10	14.5	82	230	470	820	1300	1600	3250	5700	10500	18500

TABLE 9 - INDICATIVE AIR CONSUMPTION FOR DIFFERENT TYPES OF EQUIPMENT

Type of equipment	Consumption at full load NI/min.	Type of equipment	Consumption at full load NI/min.
$6 \mathrm{~mm} \varnothing$ drill	300	Bench tamper	350
$12 \mathrm{~mm} \varnothing$ drill	500	8 kg tamper	700
$20 \mathrm{~mm} \varnothing$ drill	1150	$10 \mathrm{~mm} \varnothing$ riveting machine	450
$45 \mathrm{~mm} \varnothing$ drill	1650	$20 \mathrm{~mm} \varnothing$ riveting machine	1000
$M 6$ screwdriver or bolt screwer	300	4 kg chisel	380
M10 screwdriver or bolt screwer	400	6 kg chisel	500
M16 impulse screwer	1150	Small paint-spray gun	160
M25 impulse screwer	1650	Industrial paint-spray gun	500
$1^{\prime \prime} \varnothing$ wheel grinder	350	$1 \mathrm{~mm} \varnothing$ cleaning bellows	65
$6^{\prime \prime} \varnothing$ disk grinder	1500	$2 \mathrm{~mm} \varnothing$ cleaning bellows	250
$9^{\prime \prime} \varnothing$ disk grinder	2100	$5 \mathrm{~mm} \varnothing$ nozzle sandblasting machine	1600
Polishing machine	1200	$8 \mathrm{~mm} \varnothing$ nozzle sandblasting machine	4200
1000 kg hoist	2150	Plaster sprayer	500
Spot welder	300	Heavy-duty concrete vibrator	2500
		35 kg concrete breaker	1650
		38 kg breaker	1850
			28 kg breaker

DEGREE OF PROTECTION

NORMA EN 60529 E CEI 529

EGREE
OF PROTECTION
AGAINST
THE PENETRATION
OF LIQUIDS

DEGREE OF PROTECTION AGAINST
THE PENETRATION OF FOREIGN BODIES COMING INTO CONTACT WITH LIVE PARTS.

$\mathbf{l}^{\text {nd }}$ No.	DESCRIPTION	$2^{\text {nd }}$ No.	DESCRIPTION
0	Not protected	0	Not protected
1	Protected against solid bodies greater than $\varnothing 50 \mathrm{~mm}$ Protected against solid bodies	1	Protected against water falling vertically (condensate)
3	greater than $\varnothing 12 \mathrm{~mm}$ Protected against solid bodies greater than $\varnothing 2.5 \mathrm{~mm}$	3	Protected against drops of water falling up to 15° off the vertical Protected against rain water up to 60° off the vertical
4	Protected against solid bodies greater than $\varnothing ~$ Protected against dust	4	Protected against sprays of water from any direction.
6	Totally protected against dust	6	Protected against jets of water fired from any direction Protected against sea waves or the like Protected against the effects of immersion

CHECK COMPATIBILITY

Pneumatic products include elastomer gaskets that are made of acryl-nitrile butadiene (NBR), polyurethane or fluorocarbon rubber (FKM/FPM).
It is important for them not to come into contact with incompatible substances, which could cause them to swell or crack and subsequently malfunction.

In particular, it is necessary to check compatibility of:

- the oil used in the air compressor
- any oil used in the lubricator
- the oil or culting fluids used on the machine, which could get into the cylinders and from there the valves.

We have drawn up a compatibility table containing a list of chemicals and elastomers, and also Hostaform ${ }^{\circledR}$, the technopolymer most commonly used in our products. Please refer to the English webpage www.metalwork.it/eng/materiali_compatibilita.html or the Italian webpage www.metalwork.it/ita/materiali_compatibilita.html.

The website http://divapps.parker.com/divapps/seal/mobile/ FluidCompatibility/Desktop/ of Parker Pradifa,
one of our gasket suppliers, contains an interactive table defining incompatibility.

Below are some the oils that are definitely compatible with all the elastomers used with our products:

- UNI and ISO FD 22 lubricants (Energol HPL, Spinesso, Mobil DTE, Tellus Oil).
- low pressure compressor oil: SHELL CORENA OIL D 46
- high pressure compressor oil: SHELL RIMULA X OIL 40.

Please note that some ester-based synthetic oils used in compressors are extremely incompatible with NBR and polyurethane. ROTOROIL 8000 F2 is one of them.

Metal Work can provide you with further information or carry out research and tests if required.

AIR PURITY CLASS

The ISO 8573-1 standard establishes the level of air quality in terms of solid particles, humidity and oil concentration.

Example:

TABLE 1 - SOLID PARTICLE CLASSES

Class	$0.1<d \leq 0.5$	number of par rticle size, d [$0.5<d \leq 1.0$	$1.0<d \leq 5.0$
0	As specified by the equipment user or supplier and more stringent than class 1		
1	≤ 20000	≤ 400	≤ 10
2	≤ 400000	≤ 6000	≤ 100
3	Not specified	≤ 90000	≤ 1000
4	Not specified	Not specified	≤ 10000
5	Not specified	Not specified	≤ 100000
Class	Concentration, $\mathrm{C}_{\mathrm{P}}\left[\mathrm{mg} / \mathrm{m}^{3}\right]$		
6	$0<\mathrm{C}_{\mathrm{p}} \leq 5$		
7	$5<C_{P} \leq 10$		
X	$C_{p}>10$		

TABLE 2 - HUMIDITY CLASSES

Class	Pressure dewpoint $\left[{ }^{\circ} \mathrm{C}\right]$
0	As specified by the equipment user or supplier and more stringent than class 1
1	≤-70
2	≤-40
3	≤-20
4	$\leq+3$
5	$\leq+7$
6	$\leq+10$
Class	Concentration of liquid water, $\mathrm{C}_{\mathrm{w}}\left[\mathrm{g} / \mathrm{m}^{3}\right]$
7	$\mathrm{C}_{\mathrm{w}} \leq 0.5$
8	$0.5<\mathrm{C}_{w} \leq 5$
9	$5<\mathrm{C}_{w} \leq 10$
\mathbf{X}	$\mathrm{C}_{w}>10$

TABLE 3 - OIL CLASSES

Class	Oil concentration (aerosol, liquid, vapour) $\left[\mathrm{mg} / \mathrm{m}^{3}\right]$
0	As specified by the equipment user or supplier and more stringent than class 1
1	≤ 0.01
2	≤ 0.1
3	≤ 1
4	≤ 5
X	>5

