TECHNICAL DOCUMENTATION

PRINCIPLES OF PNEUMATICS

PRESSURE:	The ratio between a force and the surface on which it acts.				
	$P = \frac{F(N)}{S(m^2)} = Pa$				
ATMOSPHERIC PRESSURE:	Equivalent to the pressure exerted on a surface at sea level at 20°C and with 65% humidity: 10.33 m H ₂ O; 760 mm Hg; 1.013 x 10 ⁵ Pa.				
ABSOLUTE PRESSURE:	The pressure above the absolute zero value - pressure 0 = absolute vacuum.				
GAUGE PRESSURE:	The pressure referring to ambient atmospheric pressure: it is normally indicated by the pressure gauges used in pneumatic circuits.				
	Pressure read on gauge (ó bar)				
	Atmospheric pressure				
	Absolute vacuum				
	Gauge pressure = (absolute P) - (atmospheric P.)				
UPSTREAM PRESSURE:	Pressure of the compressed air at the pneumatic component inlet.				
DOWNSTREAM PRESSURE:	Pressure of the compressed air at the pneumatic component outlet.				
ΔP PRESSURE DROP:	Difference between upstream and downstream pressure.				
FLOW RATE:	The volume of air passing through a given section in a unit of time. In pneumatics, the volume unit of measurement is NI (Normal litre). In practice it represents the volumetric capacity of the air referring to ambient atmospheric pressure. E.g. in a conduit of a given section, there is a mass flow of 1 litre of air (1 dm ³) at 7 bar absolute pressure. This value expressed as volume of air corresponds to 7 litres of air (7 dm ³) at the ambient atmospheric pressure (1 bar). 1 dm ³ 7 bar absolute Mass flow 1 dm ³ 1 bar absolute Volumetric flow rate (referring to absolute pressure) • With the same pressure, the flow rate is directly proportional to the port cross section. • With the same cross section, the pressure is directly proportional to the flow rate. • Without a ΔP (difference between upstream and downstream pressure), there can be no flow rate				
PASCAL'S LAW:	A confined fluid transmits externally applied pressure uniformly in all directions.				

CALCULATING THE FLOW RATE OF A VALVE USING FLOW COEFFICIENT ${\bf k}_{\rm u}$

Coefficient k_v gives approximate values when used for compressed air. The flow rate $Q_{_N}$ at a normal volume through a valve is:

Subsonic flow: $P_2 > \frac{P_1}{2}$

$$Q_{N} = 28.6 \cdot k_{v} \cdot \sqrt{P_{2} \cdot \Delta P} \sqrt{\frac{293}{273 + t}}$$

where

 Q_N = flow rate at a normal volume [NI/min] Q_N^{N*} = critical flow rate at a normal volume [NI/min] = hydraulic coefficient in $\frac{I}{\min} \left(\frac{kg}{dm^3 \cdot bar}\right)^{1/2}$ k_v P = absolute upstream pressure [bar]

Supersonic flow: $P_2 < \frac{P_1}{2}$

$$Q_{N}^{*} = 14.3 \cdot k_{v} \cdot P_{1} \cdot \sqrt{\frac{293}{273 + t}}$$

P = absolute downstream pressure [bar]

= difference in pressure P₁ - P₂ [bar] = input air temperature [°C] ΔP

t

CALCULATING THE FLOW RATE OF A VALVE USING FLOW COEFFICIENTS C AND B

The flow rate Q_N at a normal volume through a valve is:

Subsonic flow: $P2 > b \cdot P_1$

$$Q_{N} = C \cdot P_{1} \cdot \sqrt{1 - \left(\frac{r-b}{1-b}\right)^{2}} \cdot \sqrt{\frac{293}{273+t}}$$

where

 $Q_N =$ flow rate at a normal volume [Nl/min] $Q_N^* =$ critical flow rate at a normal volume [Nl/min] C =conductance in [Nl/min \cdot bar]

P = absolute upstream pressure [bar]

r = upstream pressure : downstream pressure ratio
$$P_2/P_1$$

= critical pressure ratio $b = P_2^* / P_1$ b

= input air temperature [°C]

CALCULATING THE FLOW RATE OF A VALVE USING FLOW COEFFICIENTS C_{v}

The flow rate Q_N at a normal volume through a valve is:

Subsonic flow: $P_2 > 0.528 \cdot P_1$

$$Q_{N} = 400 \cdot C_{V} \cdot \sqrt{P_{2}\Delta P} \cdot \sqrt{\frac{273}{273 + t}}$$

where

 $Q_{N_{r}} =$ flow rate at a normal volume [NI/min] $\begin{array}{l} & \overbrace{\scriptstyle N}^{N} = \mbox{ rate at a normal volume [Nl/min]} \\ & \overbrace{\scriptstyle Q}^{*}_{N} = \mbox{ critical flow rate at a normal volume [Nl/min]} \\ & \sub{\scriptstyle C}_{v} = \mbox{ coefficient of flow [US \cdot GPM / p.s.i.]} \\ & P_{1} = \mbox{ absolute upstream pressure [bar]} \\ & P_{2} = \mbox{ absolute downstream pressure [bar]} \end{array}$

= absolute upstream pressure [bar] = absolute downstream pressure [bar] = input air temperature [°C]

Supersonic flow: $P2 < b \cdot P_1$

$$Q_N^* = C \cdot P_1 \cdot \sqrt{\frac{293}{273 + t}}$$

Supersonic flow: $P_2 < 0.528 \cdot P_1$

$$Q_{N}^{*} = 200 \cdot C_{V} \cdot P_{1} \cdot \sqrt{\frac{273}{273 + t}}$$

CALCULATING THE NOMINAL FLOW RATE

The nominal flow rate Q_{Nm} of a value, i.e. the flow at normal volume passing through a value with ($P_1 = 6$ [bar] ($P_1 = 7$ [bar] absolute) and $\Delta P = 1$ [bar], can be obtained from the previous formula as follows:

 $Q_{_{Nn}} = 66 \cdot k_{_{v}}$

 $Q_{Nn} = 943.8 \cdot C_{V}$

$$Q_{Nn} = 7 \cdot C \cdot \sqrt{1 - \left(\frac{0.857 - b}{1 - b}\right)^2}$$

Equalising the first two formulae gives: $k_v = 14.3 \cdot C_v$

 \bullet REACTIONS BETWEEN \mathbf{Q}_{Nn} - \mathbf{C}_{V} - \mathbf{k}_{v} - \mathbf{K}_{V} - S - de^2

 $Q_{_{Nn}}$ = flow rate in [NI/min] with $p_{_1}$ = 6 [bar] (P_{_1} = 7 [bar] absolute) and ΔP = 1 [bar]

 $\frac{1}{\min} \left(\frac{kg}{dm^3 \cdot bar}\right)^{1/2}$ hydraulic coefficient in $\frac{m^3}{h} \left(\frac{kg}{dm^3 \cdot bar}\right)^{1/2}$ hydraulic coefficient in Kv

coefficient of flow [US \cdot GPM / p.s.i.]

Se equivalent cross section [mm²]

d_e^2 = S $\cdot \frac{4}{\pi}$ through diameter² in [mm²] obtained from the equivalent cross section

k,

 C_v

CONVERSION TABLES

TABLE 1 - CONVERSION BETWEEN SYSTEMS OF MEASUREMENT

	.				
	and CCS system	Multiply by	International system	Multiply by	British system
Leneth					in (in sh)
Length	m	1	m	0.0234	In (Inch)
Time -		1	m	0.3040	11 (1001)
lime	S	1	S	1	\$
Area	m²	1	m²	0.000645	In- (-2
N 1	2	1	m ²	0.0929	11 ²
Volume	m	1	m	16.39.10**	in ²
a 1			m ³	0.02832	H ²
Speed	m·s ⁻¹		m·s ⁻¹	0.3048	H·s⁻¹
Acceleration	m·s ^{−2}	1	m·s ⁻²	0.3048	H+s ^{−2}
Mass	kg·s²·m ⁻¹	9.81	kg	0.4536	lb (pound)
			kg	14.594	$slug = lb f \cdot s^2 \cdot H^{-1}$
Force	kg o kp	9.81	N	4.4483	lb f (pound)
	kg	0.981	da N = 10 N		
Torque	kg∙m	9.81	N⋅m	1.356	lb f ·ft
Density	kg·s ² ·m ⁻¹	9.81	kg⋅m ⁻³	16.02	lb-ft ⁻³
Specific weight	kg⋅m ⁻¹	9.81	N⋅m ⁻³	157.16	lb f ⋅ft⁻₃
Work, energy	kg∙m	9.81	J	1.356	lb f .ft
			KWh = 3.6·10 ⁶ J		
Heat	Cal	4186	J	1055.1	BTU
Power	kg⋅m⋅s ⁻¹	9.81	W	1.3558	Ib $f \cdot ft \cdot s^{-1}$
	CV	735	W	745.7	HP
Pressure	kg⋅m ⁻²	9.81	Pa	6.8948.10	p.s.i.=lb f ⋅in ⁻²
	kg·cm ^{−2}	9.81.10	Pa		·
	kg·cm ⁻²	0.981	bar = 10 ⁵ Pa		
Mass flow	kg·s·m ⁻¹	9.81	kg·s ⁻¹	0.4536	lb·s ⁻²
Volume flow	m ³ ·s ⁻¹	1	m ³ ·s ⁻¹	0.02832	ft-s ⁻¹
	NI/min ⁻¹	0.0000167	Nm ³ · S ⁻¹	0.000472	scfm
Dynamic viscosity	kg·s·m ⁻²	9.81	Pa·s	6.896	lb f ⋅s⋅in ⁻²
, ,	Po (poise-system CGS)	0.1	Pa·s		
Kinematic viscosity	m ² ·s ⁻²	1	m ² ·s ⁻²	0.0929	ft ² ·s ⁻¹
/	St (stokes-system CGS)	10-4	m ² ·s ⁻²		
	Technical system	-		\rightarrow	
	and CGS system	Divide by	International system	Divide by	British system

TABLE 2 - TEMPERATURE CONVERSION

$^{\circ}F = [1.8 \cdot ^{\circ}C] + 32$ $^{\circ}C = [^{\circ}F - 32] \cdot 0.55$ Symbol Name Value tera Т 1012 K = °C + 273 G 109 giga M k 106 mega kilo 10³ °C = degrees Celsius h etto 10² da deca 10 K = degrees Kelvin d 10-1 deci 10-2 centi с °F = degrees Fahrenheit milli m 10-3 10-6 micro ր n 10-9 nano 10-12 pico р

TABLE 3 - MULTIPLES AND SUB-MULTIPLES

TABLE 4 - PRESSURE UNIT CONVERSION FACTORS

To obtain the pressure for the following units, multiply the number given for the source units by the coefficient shown.

Source units	Ρα	kPa	MPa	bar	mbar	kp/cm ²	cm H₂O	mm H ₂ O	mm Hg	p.s.i.
Pa	1	10-3	10-5	10-5	10-2	10.1972.10-	10.1972·10 ⁻³	101.972·10 ⁻³	7.50062.10-3	0.145038.10-3
kPa	10 ³	1	10 ⁻³	10-2	10	10.1972·10 ⁻³	10.1972	101.972	7.50062	0.145038
MPa	10 ⁶	10 ³	1	10	104	10.1972	10.1972.10 ³	101.972.10 ³	7.50062·103	0.145038·10 ³
bar	105	10 ²	10-1	1	10 ³	1.01972	1.01972·10 ³	10.1972.10 ³	750.062	14.5038
mbar	100	0.1	10-4	10-3	1	1.01972·10 ⁻³	1.01972	10.1972	0.750062	14.5038.10-3
kp/cm ²	98066.5	98.0665	98.0665·10 ⁻³	0.989665	980.665	1	1000	10.000	735.559	14.2233
cm H ₂ O	98.0665	98.0665·10 ⁻³	98.0665.10-6	0.98665.10-3	0.98665	10-3	1	10	0.735559	14.2233·10 ⁻³
mm H ₂ O	9.80665	9.80665.10-3	9.80665.10-6	98.0665.10-6	98.0665·10 ⁻³	10-4	0.1	1	73.5559·10 ⁻³	14.2233.10-3
mm Hg	133.322	133.322.10-3	133.322·10 ⁻³	1.33322.10-3	1.33322	1.35951·10 ⁻³	1.35951	13.5951	1	19.3368·10 ⁻³
p.s.i.	6894.76	6.89476	6.89476·10 ⁻³	68.9476·10 ⁻³	68.9476	70.307.10-3	70.307	703.07	51.7149	1

TABLE 5 - AIR CONSTANTS

Entity	Symbol	V	alue
Dynamic viscosity	μ	17.89.10-6	Pa s
Kinematic viscosity	γ	14.61.10-6	m ² s ⁻¹
Density	ρ	1.225	kg m⁻³
Specific heat at constant pressure	Ср	1.004	KJ kg ⁻¹ K ⁻¹
Speed of sound	a	340.29	m s ⁻¹
Gas constant	R	287.1	J kg ⁻¹ K ⁻¹

TABLE 6 - CONTENT OF WATER VAPOUR IN SATURATED COMPRESSED AIR

Grams of water vapour per cubic metre (g/m³) of air at ambient atmospheric pressure 1.013 bar (0 bar gauge pressure), saturated and compressed at the given pressures and temperatures.

						Pressur	re - bar						
Temperature °C	0	0.4	0.63	1	1.6	2.5	4	6.3	8	10	12.5	16	20
0	4.82	3.45	2.97	2.42	1.87	1.39	0.97	0.67	0.54	0.44	0.36	0.29	0.23
5	6.88	4.93	4.24	3.46	2.68	1.99	1.39	0.95	0.77	0.63	0.52	0.41	0.33
10	9.41	6.74	5.80	4.73	3.66	2.72	1.90	1.30	1.06	0.87	0.70	0.56	0.45
15	12.7	9.08	7.83	6.39	4.94	3.67	2.56	1.76	1.43	1.17	0.95	0.76	0.61
20	17.4	12.5	10.7	8.75	6.77	5.02	3.51	2.41	1.95	1.60	1.30	1.04	0.84
25	23.6	16.9	14.6	11.9	9.18	6.82	4.77	3.27	2.65	2.17	1.77	1.40	1.14
30	30.5	21.8	18.8	15.3	11.9	8.81	6.16	4.22	3.43	2.81	2.29	1.81	1.47
35	39	27.9	24	19.6	15.2	11.3	7.87	5.40	4.38	3.59	2.92	2.32	1.88
40	49.6	35.5	30.6	24.9	19.3	14.3	10	6.87	5.57	4.55	3.72	2.95	2.39
45	63.5	45.45	39.2	31.9	24.7	18.3	12.8	8.79	7.13	5.84	4.76	3.77	3.06
50	81	58	49.9	40.7	31.5	23.4	16.4	11.2	9.10	7.45	6.07	4.82	3.90

TABLE 7 - VOLUME FLOW UNIT CONVERSION FACTORS

To obtain volume flow for the following units, multiply the number given for the source units by the coefficient shown.

Source units	m ₃ /s	l/s	cm ³ /s	m³/h	m ³ /min	l/h	l/min	ft³/min (scfm)	gallone/min UK	gallone/min USA
m³/s	1	10 ³	106	3600	60	3.6·10 ³	60.10 ³	2.1188·10 ³	13.198.10 ³	15.850·10 ³
/s	10-3	1	10 ³	3.6	60·10 ⁻³	3.6·10 ³	60	2.1188	13.198	15.850
cm ³ /s	10-6	10-3	1	3600.10-6	60.10-6	3.6	60·10 ⁻³	2.1188.10-3	13.198·10 ⁻³	15.850.10-3
m³/h	0.277778.10-3	0.27778	0.277778.10 ³	1	16.667.10-3	10 ³	16.667	0.58856	3.6661	4.4028
m³/min	16.667.10-3	16.667	16.667.10 ³	60	1	6.104	10 ³	35.313	219.97	264.17-3
l/h	0.27778.10-6	0.27778.10-3	0.27778	10-3	16.667.10-6	1	16.667·10 ⁻³	0.58856.10-3	3.6661.10-3	4.4028.10-3
l/min	16.667.10-6	16.667·10 ⁻³	16.667-6	60·10 ⁻³	10-3	60-3	1	35.313.10-3	219.97·10 ⁻³	264.17.10-3
ft³/min	0.47195.10-3	0.47195	0.47195.10 ³	1.6990	28.317.10-3	1.6990.10 ³	28.317	1	6.2288	7.4804
UK gallon/min	75.768.10⊸	75.768 ⁻³	75.768	0.27276	4.5461·10 ⁻³	272.76	4.5461	0.16054	1	1.2009
US gallon/min	63.090.10-6	63.090·10 ⁻³	63.090	0.22712	3.7854.10-3	227.12	3.7854	0.13368	0.83266	1

TABLE 8 - RECOMMENDED FLOW RATE

Maximum recommended flow rate in NI/min for pneumatic circuit piping. Flow rate values are calculated as follows:

pipes Ø 2 to Ø 12 with a pressure drop equal to 0.3% of operating pressure per metre of pipe.
pipes Ø 15 to Ø 40 with a pressure drop equal to 0.15% of the operating pressure per metre of pipe.

				Inside diam	eter in mm - No	minal diameter	in gas inches				
Pressure			1/8″	1/4″	3/8″		1/2″	3/4″	1″	1 1/4″	1 1/2″
bar	Ø2	Ø 4	Ø6	Ø 8	Ø 10	Ø 12	Ø 15	Ø 20	Ø 25	Ø 32	Ø 40
2	3.5	19	53	110	190	300	370	750	1350	2500	4300
4	6.2	35	97	200	350	550	700	1400	2400	4500	7800
6	9	50	140	290	500	800	1000	2000	3500	6500	11500
8	11.8	66	185	380	660	1050	1300	2600	4500	8500	15000
10	14.5	82	230	470	820	1300	1600	3250	5700	10500	18500

TABLE 9 - INDICATIVE AIR CONSUMPTION FOR DIFFERENT TYPES OF EQUIPMENT

Type of equipment	Consumption at full load NI/min.	Type of equipment	Consumption at full load NI/min.
6 mm Ø drill	300	Bench tamper	350
12 mm Ø drill	500	8 kg tamper	700
20 mm Ø drill	1150	10 mm Ø riveting machine	450
45 mm Ø drill	1650	20 mm Ø riveting machine	1000
M6 screwdriver or bolt screwer	300	4 kg chisel	380
M10 screwdriver or bolt screwer	400	6 kg chisel	500
M16 impulse screwer	1150	Small paint-spray gun	160
M25 impulse screwer	1650	Industrial paint-spray gun	500
1″ Ø wheel grinder	350	1 mm Ø cleaning bellows	65
6" Ø disk grinder	1500	2 mm Ø cleaning bellows	250
9″ Ø disk grinder	2100	5 mm Ø nozzle sandblasting machine	1600
Polishing machine	1200	8 mm Ø nozzle sandblasting machine	4200
1000 kg hoist	2150	Plaster sprayer	500
Spot welder	300	Heavy-duty concrete vibrator	2500
		35 kg concrete breaker	1650
		18 kg breaker	1850
		30 kg breaker	2850

DEGREE OF PROTECTION

NORMA EN 60529 E CEI 529

	1 nd No.	DESCRIPTION	2 nd No.	DESCRIPTION
IF o o	0	Not protected	0	Not protected
	1	Protected against solid bodies greater than Ø 50 mm	1	Protected against water falling vertically (condensate)
DEGREE OF PROTECTION	2	Protected against solid bodies greater than Ø 12 mm	2	Protected against drops of water falling up to 15° off the vertical
AGAINST THE PENETRATION	3	Protected against solid bodies greater than Ø 2.5 mm	3	Protected against rain water up to 60° off the vertical
OF LIQUIDS	4	Protected against solid bodies greater than Ø 1 mm	4	Protected against sprays of water from any direction.
I DEGREE OF PROTECTION AGAINST	5	Protected against dust	5	Protected against jets of water fired from any direction
THE PENETRATION OF FOREIGN BODIES COMING INTO CONTACT	6	Totally protected against dust	6	Protected against sea waves or the like
WITH LIVE PARTS.			7	Protected against the effects of immersion

CHECK COMPATIBILITY

Pneumatic products include elastomer gaskets that are made of acryl-nitrile butadiene (NBR), polyurethane or fluorocarbon rubber (FKM/FPM).

It is important for them not to come into contact with incompatible substances, which could cause them to swell or crack and subsequently malfunction.

In particular, it is necessary to check compatibility of:

- the oil used in the air compressor
- any oil used in the lubricator
- the oil or cutting fluids used on the machine, which could get into the cylinders and from there the valves.

We have drawn up a compatibility table containing a list of chemicals and elastomers, and also Hostaform[®], the technopolymer most commonly used in our products. Please refer to the English webpage www.metalwork.it/eng/materiali_compatibilita.html or the Italian webpage www.metalwork.it/ita/materiali_compatibilita.html.

The website http://divapps.parker.com/divapps/seal/mobile/ FluidCompatibility/Desktop/ of Parker Pradifa,

one of our gasket suppliers, contains an interactive table defining incompatibility.

Below are some the oils that are definitely compatible with all the elastomers used with our products:

- UNI and ISO FD 22 lubricants (Energol HPL, Spinesso, Mobil DTE, Tellus Oil).
- low pressure compressor oil: SHELL CORENA OIL D 46
- high pressure compressor oil: SHELL RIMULA X OIL 40.

Please note that some ester-based synthetic oils used in compressors are extremely incompatible with NBR and polyurethane. ROTOROIL 8000 F2 is one of them.

Metal Work can provide you with further information or carry out research and tests if required.

AIR PURITY CLASS

TABLE 1 - SOLID PARTICLE CLASSES

		Maximum number of particles for m ³				
Class		Particle size, d [µm]				
Cluss	0.1 < d ≤ 0.5	0.5 < d ≤ 1.0	1.0 < d ≤ 5.0			
0	As specified	by the equipment user or supplier and more stringent	than class 1			
1	≤ 20000	≤ 400	≤ 10			
2	≤ 400000	≤ 6000	≤ 100			
3	Not specified ≤ 90000 ≤ 1000					
4	Not specified	Not specified Not specified ≤ 10000				
5	Not specified	Not specified	≤ 100000			
Class		Concentration, C_{P} [mg/m ³]				
6		$0 < C_{p} \le 5$				
7		$5 < C_{p} \le 10$				
X		C _p > 10				

TABLE 2 - HUMIDITY CLASSES

Class	Pressure dewpoint [°C]
0	As specified by the equipment user or supplier and more stringent than class 1
1	≤ -70
2	≤ -40
3	≤ -20
4	< +3
5	≤ +7
6	≤ +10
Class	Concentration of liquid water, C _w [g/m³]
7	C _w ≤ 0.5
8	0.5 < C _w ≤ 5
9	$5 < C_w \le 10$
X	C _w > 10

TABLE 3 – OIL CLASSES

Class	Oil concentration (aerosol, liquid, vapour) [mg/m³]
0	As specified by the equipment user or supplier and more stringent than class 1
1	≤ 0.01
2	≤ 0.1
3	< 1
4	< 5
X	> 5